10

15

20

25

30

OpenLCB Working Note

?pen & E B Time Broadcast Protocol

Mar 31, 2013 Preliminary

1 Introduction

A Working Note is an intermediate step in the documentation process. It gathers together the
content from various informal development documents, discussions, etc into a single place. One
or more Working Notes form the basis for the next step, which is writing one or more
Standard/TechNote pairs.

This Working Note is intended to become the Standard and Technical Note on the OpenLCB
Time Broadcast Protocol. Text in italics highlights aspects that are still thought to be in flux.

Model railroad layouts sometime have their own time displayed via visible clocks that people
refer to when operating the layout. These might display a different time of day from the current
real clock time, so that an evening train can be run during the day. They might run at a different
rate, so that the shorter distances of the model are covered by a train in the right number of “fast
minutes”.

Layouts that have multiple clock faces might want to synchronize them by running them from a
single time generator. OpenLCB should provide a way to do that over existing OpenLCB
infrastructure.

Producer/Consumer events, one per second or minute, could certainly meet this need. Since
event IDs are arbitrary, in the absence of any other support, the clocks would have to have 24*60
or 24*60*60 separate event IDs configured between clock time producers and consumers. This
is untenable. Hence, the primary reason for this Standard is to create well-defined ranges of
event IDs that can be used to represent time for driving clock displays.

A secondary purpose is to allow producers on the layout to control the clock operation by
producing certain events.

A tertiary purpose is to allow other consumers on the layout to be controlled via the time signal
by interpreting the events or event ranges specified here. Not all timing-related purposes will be
met by the contents of this Standard, and other ways of handling timing formation will be needed
for those.

1.1 Served use cases

Fast clocks distributed around the layout all show the fast time. They start and stop together.
Start and stop controls are distributed around the layout. The rate can be varied as needed. The
display includes a modeled date.

In addition to fast time, a “correct wall-clock time” can also be distributed around the layout
room. Further, a “duration so far” time is distributed around the layout. It starts and stops
independently of the fast clock.

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 1 of 11 - Mar 31, 2013

http://openlcb.org/Licensing.html

35

40

45

50

55

60

65

OpenLCB Time Broadcast Protocol Working Note

A node connected to model building lights turns them on and off at specific fast-clock times. A control
for lights or ventilation can turn it on and off at specific wall-clock times.

Time acts in multiple ways:
* Action at a specific time: “The bell rings at noon”
* Condition during an interval: “The porch light should be on from 5PM to midnight”
* Asastate: “The clock shows 10:15AM”

Model building lights and layout room lights turn on and off in a fast cycle to simulate a day every 10
minutes.

The model railroad can run through a scenario: Start at 17:00 (SPM) and run to 20:00 (§8PM), then go
back to 17:00 and repeat.

A town contains 100 separate lights, each connected to an output pin on OpenLCB nodes. They turn on
and off on a detailed cycle.

Simple nodes should be able to respond to timed events without any additional cost.

Modular layout sections developed and configured in separate locations can be brought together and
operated without prior management/allocation of magic numbers, and with only minimal (at most one
node and one operation) reconfiguration.

1.2 Unserved use cases

The model building lights turn on and off only a few seconds apart - this proposal is for minute-
granularity timing. Faster timing can be controlled from the node using a script that gets its initial
trigger from the fast clock signal, or some other node can produce closely-timed events that are
consumed to drive the lights.

Rapidly moving from one time to another, e.g from 20:00 back to 17:00 in the use case above, can be
done in several ways:

* By rapidly stepping through the intervening minutes. This will ensure that e.g. a light that turns
on at 14:00 and off at 18:00 will properly be on when the sequence restarts at 17:00. But it will
also cause the church bell that's scheduled to strike at 08:00 and 12:00 to ring between “20:00”
and “17:00™.

* By going directly to 17:00. This will skip ringing the church bells in the point above, but might
not get the state at 17:00 correct. The state can be addressed by optionally producing the
necessary events as part of going directly.

Layout lights execute a pattern that's different when the modeled day is Monday vs Saturday — Day of
week, or calendar date in general, does not result in different events being produced. This use case
should be solved the regular producer-consumer techniques and a smarter scheduler to produce the
appropriate events.

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 2 of 11 - Mar 31, 2013

http://openlcb.org/Licensing.html

70

75

80

85

90

95

100

OpenLCB Time Broadcast Protocol Working Note

2 Specified Sections

This is the usual sections for a Standard, to accumulate the Standard and Technical Note content in its
eventual order.

2.1 Introduction
Note that this section of the Standard is informative, not normative.
A layout control bus can do a number of useful things with fast-time information:
* Connect a number of clock displays to keep them synchronized.
* Provide time information to plug in devices, e.g. throttles.

* Provide cueing for time-based occurrences, such as lights turning on and off at specific modeled
times.

Generally, existing fast clock systems have one unit that produces time information, and one or more
units that consume it. Existing fast clocks typically only report minutes, not seconds or finer time
divisions. Some existing fast clock systems track a day/date, in addition to time.

Fast clocks run at various rates, and can be controlled by the user either at the producer node or from
other locations. Some fast clock systems broadcast run/stop and rate information, which can also be
useful when interpolating within a fast-minute.

OpenLCB broadcasts time information by producing Event IDs. Specific Event IDs correspond to
specific times with the day, for example “08:10:00”, so that consumers can be taught to react to time-
of-day. The date is handled separately, for those installations that choose to use it.

The primary use of this information is to display it on clock faces around the layout.

In addition, simple nodes can use specific EventIDs to trigger their actions at specific times. For
example, lights in buildings in a model town can be sequenced to come on at various times by
configuring consumers in a node to react to time events by changing output lines.

Since remote control of the fast clock is desired, a set-protocol using produced and consumed events is
defined. This makes it possible for throttles and other user-interface nodes to have a general fast-clock-
control capability built in.

2.2 Intended Use
Note that this section of the Standard is informative, not normative.
Primary use is driving clock faces. (Maybe move use case text from above here?)
2.3 Reference and Context
2.4 Message Formats
In addition to the following Event IDs, the well-known event ID “Delivers Clock Protocol” is defined.

The upper six bytes of the following messages must be the valid Node ID of the clock producing node.

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 3 of 11 - Mar 31, 2013

http://openlcb.org/Licensing.html

OpenLCB Time Broadcast Protocol Working Note

Note that there are no well-defined values of the clock event IDs. You locate the clock generators and
their event spaces via the usual IdentifyEvent/IdentifyProducer mechanisms starting with the “Delivers
Clock Protocol” event ID.

The details of the following formats are still being worked out.

105 The values are packed into two bytes to make it easier to allocate the unique “Specific Upper Part”; it is
required to be the Node ID of the clock generator.

2.4.1 Set/Report Time Event ID

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte S Byte 6 Byte 7

Specific Upper Part Hours Minutes
0-23 0-59

The upper nibble of byte 6 is only 0 or 1, which can be used to distinguish this format.
110 2.4.2 Set/Report Date Event ID

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Specific Upper Part 0x40+Mont | Day
h 1-31
0x41-
0x0x4C

The upper nibble of byte 6 is 4, which can be used to distinguish this format.
2.4.3 Set/Report Year Event ID

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Specific Upper Part 0x3000+Year
0x3000-0x3FFF

115 The upper nibble of byte 6 is 3, which can be used to distinguish this format.

The lower twelve bits are the year, 0AD to 4095AD. (It's been proposed that these instead be in some
BCD format, which represents 999 years around some epoch)

2.4.4 Set/Report Rate Event ID

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Specific Upper Part 0x5000+Rate

5 Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 4 of 11 - Mar 31, 2013

http://openlcb.org/Licensing.html

OpenLCB Time Broadcast Protocol Working Note

120
The upper nibble of byte 6 is 5, which can be used to distinguish this format.

Rate is a 12 bit signed fixed point rrrrrrrrrrrr, -511.75, -511.00, ..., -1.00, ..., -.025, .00, 0.25, 0.50, ...,
511.75 (Is that the right range? Enough granularity? Would something simpler be easier?)

A rate of zero is valid. The stop/start clock event should be used to stop and start the clock, because that
125 doesn't require resetting, or even knowing, the current rate.

(should one bit be reserved, perhaps in the high nibble, to carry the run/stop state when reporting the
rate? That was in an earlier proposal, makes it easier to look for the entire state in a single event, but
it's got messy semantics)

2.4.5 Stop/Start Clock
130

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Specific Upper Part Stop 0x6001
Start 0x6002

The upper nibble of byte 6 is 5, which can be used to distinguish this format. (Could have also put into
higher part of e.g. month message, to save this code space)

Having a separate start/stop mechanism, instead of just setting rate to zero, makes distributed start/stop
control easier. There's no need for everybody to remember the current rate while the clock is stopped.

135 2.5 States

Each clock has an independent running/stopped state and an independent rate.
When the clock is in stopped state, its internal time is not changing.

When the clock is in running state, its internal time is advancing (rate X) as fast as normal time.
2.6 Interactions

140 The well-known event ID “Delivers Clock Protocol” shall be produced by every node when it first
starts to operate as a clock generator. When enquired about, the node has to return “valid” if the clock is
operating, and “invalid” if it is not. (Note that this is operating, not running; if it's serving as a clock
generator and will produce and consume the appropriate event IDs)

A Set/Report Rate event for which there are one or more consumers are produced every real 60(?)

145 seconds while the clock is running to update the layout. (Should the current one also be produced
when the clock is not running? Sometimes nice to be able to stop all traffic on the network, which you
can do ifit doesn't send while the clock is stopped) This is written in a way that makes options are
available for e.g. low-bandwidth clocks, see below.

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 5 of 11 - Mar 31, 2013

http://openlcb.org/Licensing.html

150

155

160

165

170

175

180

185

OpenLCB Time Broadcast Protocol Working Note

The Set/Report Date event is produced when the Date changes. Nodes that want it, e.g. to initialize a
display, can ask for it from the clock-producer node using IdentifyEvents. (Should it also be produced
periodically? How often?)

Clock producer nodes shall produce a Set/Report Date event if they receive one but do not update their
internal date. Clock producer nodes shall produce a Set/Report Year event if they receive one but do not
update their internal date.

A Set/Report Time event is produced every time the current time changes, e.g. every fast minute.
(Should it be periodically produced, e.g. every real minute, when the clock is stopped? That updates
recent joiners, but it's nice to be able to stop all network traffic).

Note that nodes should not assume that they will receive any time event only once. As time is set, it's
possible for a node to receive the current time more than once.

When a Set/Report Time event is received at a clock-producer node, it may, but is not required to, set
the time in the clock producer node. If the time is not set, the current time event is produced
immediately after.

If a Set/Report Rate event is received, the clock-producer's rate is set to the rate embedded in the event.
The run/stop bits are ignored. If the clock does not support the requested rate, it moves to the closest
non-zero supported rate, and produces a Set/Report Rate event containing the current rate. Rate can be
set while the clock is running or stopped. The clock producer node may, but is not required to, produce
a Set/Report Time immediately after the rate event is produced to ensure that all agree on the exact
time.

The use of the same event to broadcast the rate and to set the rate should perhaps be revisited. Is that
consistent with event semantics? Or should a “rate set event” do the set and cause the clock source to
emit a “current rate” event? There's no security issue here, because we receive the Node ID of the set-
sending node either way. And a clock receiving a set command, no matter what the format, can still
decide not to do it (if the protocol allows rejecting that, see above)

Clock generators may also respond to other events to set their time. For example, to allow slaving of a
clock generators events to time events from another clock generator, a clock generator may react to
time event IDs with another high six bytes. How, when, whether to do that is an internal configuration
option of the clock generator node, not discussed by this Standard.

2.6.1 Event Identification and Reporting
When a clock producer node receives an Identify Events message, it replies with an
IdentifyProducedRange and an IdentifyConsumedRange that covers the entire set of time event IDs.

In addition, the node will reply with:

* An IdentifyProducedEvent message for the current rate (and start/stop state?), showing valid &
active (if start/stop not in the event, also a stop/start event for the valid case)

* An IdentifyProducedEvent message for the current year showing valid & active
* An IdentifyProducedEvent message for the current date, showing valid & active

* An IdentifyProducedEvent message for the current time, showing valid & active

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 6 of 11 - Mar 31, 2013

http://openlcb.org/Licensing.html

190

195

200

205

210

215

220

OpenLCB Time Broadcast Protocol Working Note

* An IdentifyProducedEvent message for the well-known event ID “Delivers Clock Protocol”
All of the preceding may be in any order, but the given order is recommended.

(There's actually an standards issue here — with the current coding, the Date events don't occupy more
than half of the reported range)

When a clock producer node receives an IdentifyProducers message that covers any of the events it
handles (Set/Report Time, Set/Report Date, Set/Report Year, Set/Report Rate, Stop/Start Clock) it will
reply with a Producerldentified message showing valid. If the queried event is the current state (same
time, same date, same year, same rate & start/stop status, or same start/stop status respectively), the
reply will be marked active. Otherwise, it will be marked inactive.

When a clock producer node receives an IdentifyConsumers message that covers any of the events it
handles (Set/Report Time, Set/Report Date, Set/Report Year, Set/Report Rate, Stop/Start Clock) it will
reply with a Consumerldentified message showing valid. If the queried event is the current state (same
time, same date, same year, same rate & start/stop status, or same start/stop status respectively), the
reply will be marked active. Otherwise, it will be marked inactive.

This lets devices rapidly establish information about a clock, even if they don't know it exists. To find
the current clock:

* Send a global IdentifyProducers for well-known event ID “Delivers Clock Protocol”

* Ifthere's no reply, no clock exists. If there is a reply, extract the source node ID (alias) of the
clock producer node and send an IdentifyEvents.

* The reply will contain IdentifyProducedEvent messages that show the current clock producer
state via their active/valid status.

2.6.2 Slaving Clock Generators

For modular layout use cases (still being identified), it's useful to have the time events be created in
synch with some other clock generator. For example, a modular segment has a clock generator and
multiple nodes that are configured to together do complex automation. You want to include it in a
larger modular layout without having to reconfigure this.

One way to do that is to slave the modular clock generator to another master clock generator, so that
the master clock generator controls and specifies the time, and the modular clock generator produces its
own events to represent that time. The consuming nodes then act on the modular clock events they are
configured with.

Operationally, this slaving consists of reissuing the events with different top-end bytes, translating the
top-end bytes from the master clock generators values to the slaved modular clock generator values.

Mechanically, this can be done by having a mode in the clock generator node that does this, having a
gateway onto the modular OpenLCB segment that does the translation (and removing the original
modular clock generator), or some other mechanism. The standard is about protocol, not
implementation, and so is silent about this.

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 7 of 11 - Mar 31, 2013

http://openlcb.org/Licensing.html

225

230

235

240

245

250

255

OpenLCB Time Broadcast Protocol Working Note

If a modular clock generator is to be configured to follow some other clock event range, that raises the
question of how to do it. The Standard is silent about this too, but it's important that there be a way to
do it within the Standard. Choices include:

* Configure it via the memory configuration protocol to listen for a particular value of the top
bytes.

* Many layouts just have one clock generator. If that's true, a button on the clock that says “Slave
to master” will get the right one. If there's more than one, pushing that button could just go to
the next one.

* Use teach/learn or blue/gold to teach an event from the master clock, or some producer or
consumer of the master clock, to the slave. For example, if there's a master “clock stop” button,
teach that to the slave so that it knows that's the range to listen to. This can be done even if
there are multiple clocks operating on the layout.

3 Background Information
This section will go directly into the Technical Note.

This protocol doesn't appear in PIP, because it's totally self-identifying. There's no formal, functional
need to check for it. IdentifyProducers can find the clock producer node(s) on the layout. Perhaps it
should be added to the PIP mechanism to make it unambiguous that the node manufacturer intends this
to be supported, trigger automated tests, etc.

3.1 Multiple Clocks

A user might want multiple clocks, for example a real-time clock to show current time, and a fast clock
to show railroad time.

The protocol provides for this via multiple clock generators with unique Node IDs, but it's up to the
user to allocate clock generators and configure the clock producers and consumers to use the proper
clock number as part of their event range.

3.2 Configuration via a simple teach-learn Ul

Blue and Gold configuration does not have to be implemented, perhaps many devices won't, but
important to show it can be done. Configuring consumers to react to a particular time event can be done
by putting a programming button on the master time producer that sends the learn message for the
current clock time.

Better (more powerful) Uls can then use the same underlying teach/learn implementation.
To Teach: gold; blue to select: hour, minute, rate; up/down to change; gold
To nominate: blue, blue; gold to select: h,m,r; up/down; blue
From the Arduino docs:
The User Interface (UI) uses the Blue / Gold buttons:

A (Blue/Gold)+ sequence Sets or Nominates the Time, Rate or Alarms to learn a Teach-event.

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 8 of 11 - Mar 31, 2013

http://openlcb.org/Licensing.html

260

265

270

275

280

285

290

OpenLCB Time Broadcast Protocol Working Note

Gold(Blue/Gold)+ sequence sends a Teach-event which includes the event associated with the
current-Time, the Rate-, or any of the Alarms.

3.3 Alarms

Early OpenLCB clock prototypes contained support for “Alarms”, special events that could be
configured to be produced at a specific time. By configuring consumers to listen for the alarm event,
instead of a particular time, it becomes easier to reconfigure the start or stop time for layout activities:
Change one thing, the association between producing the alarm event and the time that it happens, and
all the other nodes will follow without reconfiguration.

This protocol does not contain any specific support for alarms, because it doesn't need to. Simplicity is
important, and the production of alarms can proceed completely independently. Any event ID could be
produced by any node, upon receipt of the particular time event, and that don't have to be part of this
protocol. An alarm-producer isn't specifically part of the clock producer. It could be anywhere. And no
protocol needs to be defined for alarm events, as they're just regular produced events: When A is
produced, produce B and C. That's a generally-useful thing to have, even for non-time events.

3.4 Low-Bandwidth Clock Producers

The Standard specifies that only time events with consumers need to be produced. Clock-producing
nodes can use this to reduce the bandwidth used by the clock events, particularly at high rate. The
producing node can automatically generate and maintain a list of consumed event IDs, and produce
only those.

Once the clock-producing node is up and running, it can listen for Consumerldentified messages and
include any Set/Report Time event IDs seen in its list. Nodes that newly attach or restart will emit these
automatically. So long as the clock-producing node isn't marked as a Simple node, these will be
forwarded to it.

The process to find all consumers when the clock-producing node becomes active on an already
existing OpenLCB network is similar, it just involves querying the entire network:

* Send a Verify Node Global, and construct a list of nodes from the response
* At a suitably metered interval, send a IdentifyEvent to each node.
* Construct the list of consumed event IDs from the response.

There is currently no support to do a network-parallel query such as “Identify All Consumers of Event
IDs in the following Range” due to buffer-management and network-load-scaling issues with it.

3.5 History and Numerology

There are slightly more than 2! seconds in a day, and just less than 2!'! minutes. A 17-bit “seconds
since midnight” format could be used, but it would still take three bytes, and is somewhat harder to
read and display. It would keep the non-used code points together, perhaps better for expansion, but it's
not clear how much time is going to expand.

By-seconds events allow much more precise timing, particularly at low fast-clock multipliers (clocks
near real-time), but they result in too much traffic at high fast-clock multipliers (really fast clocks). A

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 9 of 11 - Mar 31, 2013

http://openlcb.org/Licensing.html

295

300

305

310

OpenLCB Time Broadcast Protocol Working Note

10 minute fast 24 hour cycle is 144 messages per second, more than 15% of CAN bandwidth. Even
faster rates, for example to do a fast recycle to prepare for a new sequence, would clearly saturate the
bus. This has led to the choice of minute events, with seconds reserved for possible future
consideration.

A denser format would be 5 bits hour, 6 bits minutes, 6 bits seconds all put consecutively, instead of in
separate bytes. That still takes three bytes, but keeps the seven spare bits together.

Commands to change the run/stop state and clock rate are broadcast as separate events. That's better
than coding them in the time events themselves, because if e.g. rate was separate bits in the event,
simple nodes could not be configured to recognize specific times.

We're not sending events-with-only-minutes, or -only-seconds. Those make it easy to do something
once a minute or once a second via consumer, but those are not to the only interesting intervals: Just do
the calculation.

Regardless of whether the clock sends seconds or minutes, small times can be maintained via a local
timebase synched to the time broadcast and the rate messages. There's a limit to how precise this can
be, but it is probably worth a factor of 10 and perhaps 100 in resolution. Using received time is much
simpler, and the smallest time commonly used by fast clocks is the second. Since OpenLCB networks
can handle 3-4 messages/second for a fast clock with second resolution, it seems simplest to just
broadcast the seconds.

3.6 Future Work

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 10 of 11 - Mar 31, 2013

http://openlcb.org/Licensing.html

315

OpenLCB Time Broadcast Pr

otocol Working Note

Table of Contents
LI 018 (06 18 18 o) s USRS 1
L1 SEIVEA USE CASES...uveuretientieiieriiett ettt ettt sttt et e b et e ea e sat et e et e e st e bt eaeesatenbeenbeesee bt entesaeenaeenseenean 1
1.2 UNSEIVEA USE CASES...eeeuvvieerrieeiieeeiieeeteeesteeesteeessseaessseeassseessseeasssasssssesssseesssseessseeesssesesssesessseennes 2
2 SPECIHTIEA SECLIONS.vietiieiiieiieeteeiee ettt e et et e et esteeeebe e bt e ssbeeseesabeesseessseensaessseenseassseensaessseenseensseenses 3
2.1 IETOAUCTION. ¢ttt ettt ettt et e s et et e s aad e b e e sat e e bt esabeembeesnbeenbeessbeenbeenneeenne 3
2.2 INEENACA USE.....uieiiieiiieiiieiie ettt ettt ettt e et stte et e e ateesbesnaa e seessaeesbaessaeenseesseensaessseanseensseenseas 3
2.3 Reference and CONEXL.........eeiuiiiiiiiieeieeiie ettt ettt st esite st e e et e et e sat e e bt e saeeeabeesaeeenbeesseesnseas 3
2.4 MESSAZE FOTMNALS.eiiiiiiiiiiieciie ettt e st e et te e e bt e e e ataeesnteeeesaaeesaseeennseeenseesnseens 3
2.4.1 Set/Report Time Event ID........c..oooiiiiiiiiii ettt e e seaeeeeaeas 4
2.4.2 Set/Report Date EVent ID........c.coooiiiiiiiiiiiiiiiie ettt sre et eve i e sneesaeennees 4
2.4.3 Set/Report Year EVENt ID........ccuii it srea e e siree e e e 4
2.4.4 Set/Report Rate EVENt ID........cccuiiiiiiiiiiiieiie ettt s aeeenbe e 4
2.4.5 StOP/STATt CLOCK. ... viiiiiiieeiie ettt ste e et e e et be e teeestaeeesaeeessaaeessaeessbeeensseeensseeesseens 5
2.5 SHALES. ..ttt et h e et e e ea e bt e a bt e bt e ea bt e b e sane e be e e it e e beesane s 5
2.0 TNEETACTIONS. ..cueeeuteetie ettt ettt ettt e et et e e at e e bt esabeeab e e st e s bt e e eee st e e esbeembeeaseeembeenseeenbeaanaesabeenneeans 5
2.6.1 Event Identification and RePOTtING............cccueeiiieriieiienieeiieeie ettt esaeseve e 6
2.6.2 S1aving ClOCK GENETALOTS.eiierieeieeeeieiieeitieeereeeeieeessesesreeessseeassseeessseeesseesseeessesessseesnsses 7
3 Background INfOrmMation...........ccuieriieiiieiiieits ettt ettt ettt e ebe e st e eebeeaeeesbeesaesnseenseesnseesnesnsean 8
3.1 MUILIPIE CLOCKS. .. eiiiiiieceiieeiie ettt s et e e st e e s aaeeasssaaansaaeensaaesssaeesssseessseeensseeesseenn 8
3.2 Configuration via a simple teach-learn Ul............ccocoiiiieiiiiiiiiieie et 8
IR N -1 4 1 USRS 9
3.4 Low-Bandwidth Clock PrOQUCETS.........cc.coiuiiiiieiiiieiiieiieei ettt 9
3.5 HiStory and NUMETOIOZYcccueiruiieeiiieeiieecieeesteeesteeesteeeeaeesssseesaseessseeessseeessseeessseeessseeensseesnnns 9
3.0 FULUIE WOTK.....eiiiieeitiiiieete ettt ettt e ete et e et et e et e e s taeesbeeesbeenbaessaeenseessneensaennseenseensnas 10

Copyright 2013. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 11 of 11 - Mar 31, 2013

http://openlcb.org/Licensing.html

	1 Introduction
	1.1 Served use cases
	1.2 Unserved use cases

	2 Specified Sections
	2.1 Introduction
	2.2 Intended Use
	2.3 Reference and Context
	2.4 Message Formats
	2.4.1 Set/Report Time Event ID
	2.4.2 Set/Report Date Event ID
	2.4.3 Set/Report Year Event ID
	2.4.4 Set/Report Rate Event ID
	2.4.5 Stop/Start Clock

	2.5 States
	2.6 Interactions
	2.6.1 Event Identification and Reporting
	2.6.2 Slaving Clock Generators

	3 Background Information
	3.1 Multiple Clocks
	3.2 Configuration via a simple teach-learn UI
	3.3 Alarms
	3.4 Low-Bandwidth Clock Producers
	3.5 History and Numerology
	3.6 Future Work

