
OpenLCB Technical Note

Common Information

Feb 17, 2015 Adopted

 1 Introduction
The OpenLCB Standards are independently normative. That is, each document contains
statements that assert how things should or ought to be, and each document is written to be self
consistent. In general, documents marked as Standards focus on explicit requirements and
assertions, while Technical Notes provide non-binding context and rationale; to avoid confusion,
the terms Normative and Informative are liberally used in section headings.

This Technical Note provides common background information that may be useful as you read
existing Standards and Technical Notes, and may provide useful guidance as you write new ones.

This Technical Note is not normative in any way.

 2 Data
 2.1 Reserved fields

When sending a message, set reserved fields to zero value unless otherwise specified. When
transporting a message, transport reserved quantities unchanged.

When receiving a message, consult the Standard: reserved fields come in two flavors. One is
“reserved, send as zero, ignore upon receipt”. This means that a receiving node shall process the
message, ignoring the value in the reserved field (or assuming it was the default value of zero).
Some future extension or additional information may not be available, but the interaction can be
continued without it. The other flavor is “reserved, send as zero, check upon receipt”. This
means that if the receiving node finds a non-zero value in that field, it must abort processing the
message, not perform any action requested by it, and if appropriate, should respond with an error
code, preferably some form of “unimplemented”. Future versions of the standard may define the
bits marked with “check upon receipt” in a way that is incompatible with previous versions of
the standard, including giving the rest of the message a completely different meaning when the
reserved field is not the default value.

The zero value sometimes indicates a non-initialized value.

 2.2 Numerical representation

Unless otherwise specified, OpenLCB fields are unsigned.

OpenLCB does not define a floating point representation. IEEE half-size (16 bit) floats are used
in e.g. the Throttle protocols under development.

 2.3 Byte sequences

Bytes are defined as 8 bits.

Copyright 2011-2015. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 1 of 5 - Feb 17, 2015

5

10

15

20

25

30

http://openlcb.org/Licensing.html

OpenLCB Common Information Technical Note

OpenLCB is, by default, big-endian. When sending multi-byte data, the byte containing the most
significant bits is sent first. This is the same as the CAN header, Ethernet and the common internet
protocols, but not the same as the Intel x86 architecture.

When a sequence of bytes is being documented or described, the first or most significant is labeled 0,
the next is labeled 1, etc. This results in phrases like “byte 0” and “the first byte” referring to the same
thing.

 2.4 Bit sequences

The OpenLCB protocol descriptions use LSB 0 coding, where the the least significant bit in any word,
byte or field is numbered 0, with bits to the left (toward the MSB) then given higher numbers.

Although “first bit” properly denotes the most-significant bit of the field being discussed, “second bit”
refers to the bit adjacent to the first bit, etc, it is better to refer to “most significant bit” rather than “first
bit”.

The CAN specification and some layout-level protocols, such as NMRA DCC and Digitrax Loconet,
use LSB 0 coding. That's the primary motivation for the choice of LSB 0 for OpenLCB. Unfortunately,
MSB 0, where the most-significant bit is labelled with 0, is what's used for many protocol
specifications, including the RFC series of protocols and the Ethernet definition. It's unfortunate that
there's no single convention that OpenLCB could adopt to be consistent with the entire world, but there
isn't.

 2.5 Strings

OpenLCB strings are sequences of UTF-8 values1. This allows OpenLCB devices to represent all the
international writing systems that are described by Unicode2 with only a small processing burden in the
most common (Western alphabet) case.

OpenLCB does not prefer length-coded or null-terminated strings. Standards should specify which is
used in each case.

OpenLCB uses newline, also known as line-feed (\n 0x0A) as the line-end character within strings.
Carriage return (\r 0x0D) should be considered as general white space.

There are no specific tab settings. You cannot assume a tab is any particular number of spaces. You can
assume it counts as non-null white space.

Certain standards retain the 0x80 bit in the first byte as a way of eventually indicating other codings,
particularly compression of the UTF-8 text. If this is possible, it's specified in the relevant standard.
For example, XML CDI strings can start with either the UTF-8 text for “<?xml” which starts with
0x3C, or with a 0x80 followed by an indication of the format of the compressed UTF-8 text that
follows. See the individual standards for more information.

1For an introduction to UTF-8 coding and how it represents international character sets, see e.g.
http://en.wikipedia.org/wiki/UTF-8

2From the glossary of the Unicode standard, http://www.unicode.org/versions/Unicode6.1.0/ch03.pdf#G7404 : “UTF-8: A
multibyte encoding for text that represents each Unicode character with 1 to 4 bytes, and which is backward-compatible
with ASCII. UTF-8 is the predominant form of Unicode in web pages.” See sections 3.9 and 3.10 in the Unicode
specification, link above.

Copyright 2011-2015. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 2 of 5 - Feb 17, 2015

35

40

45

50

55

60

5

http://openlcb.org/Licensing.html
http://www.unicode.org/versions/Unicode6.1.0/ch03.pdf#G7404
http://en.wikipedia.org/wiki/UTF-8

OpenLCB Common Information Technical Note

 3 Presentation
OpenLCB documents use the prefix “0x” to indicate a hexadecimal value. Hexadecimal values are
presented with capital letters: 0xAB not 0xab. A sequence of bytes only requires the “0x” prefix on the
first byte: 0x12 34 56 78.

OpenLCB documents use the prefix “0b” to represent a binary value.

Octal representations are not used.

The boolean values are “true” and “false”.

Constants should always include the full field length. A value for a 12-bit field should be written as
0x002 or 0b000000000010, not 0x2 or 0b10.

Commas can be used in numbers after decimal thousands (65,523), 16-bit double-bytes for hex
constants (0x1234,4567), and four-bit nibbles in binary (0b1000,0000). Do not put a space after the
comma.

Byte sequences for specific quantities, including both Unique ID (node ID) and Event ID values,
should be shown in dotted-hex format e.g. “01.AB.34.01.CD.E3”. General byte sequences that don't
represent a single value should be in spaced-hex format, e.g. “01 02 AB DE 00 00”. It's recommended
that leading zeros be provided on output, but not required on input. Dotted-decimal should not be used
unless it's made very clear that that is the case.

 3.1 Presentation of CAN Quantities

The 29-bit CAN extended header is presented as a single hex string: 0x0000,0000. The active bits are
at the right side, so that the highest possible value is 0x1FFF,FFFF.

“sss” is used to represent the source node ID alias in a CAN frame.

“ddd” is used to represent the destination node ID alias in a CAN frame.

A sample CAN header with both source and destination node addresses might be: 0x1Fdd,dsss or
0x1Fdddsss.

The data content of a frame is presented as a sequence of individual bytes. A typical complete frame
might be then 0x1FFFFsss 01 02 03 04.

 3.2 Presentation of an OpenLCB message

OpenLCB messages are described in this common format:

Name Description Simple
Node

Dest
ID

Event
ID

Common
MTI

Data Content

(optional field) N N N 0x0000

• Name: Standard name of the message.

Copyright 2011-2015. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 3 of 5 - Feb 17, 2015

65

70

75

80

85

90

95

http://openlcb.org/Licensing.html

OpenLCB Common Information Technical Note

• Description: Optional field, generally used if there is variant forms.
• Simple Node: Whether the message is included in the “simple node subset” (defined in the

Message Networking TN).
• Dest ID: Whether this message includes a destination address for a specific node. If not, the

message is global.
• Event ID: Whether this message includes an Event ID.

Common MTI: The 16-bit value, typically in hex notation, of the full Message Type Indicator.
• Data Content: Summary description of data bytes, if any, included after fixed fields such as

MTI and destination address.

Adaptation to CAN messages are described in this format:

Name Description CAN-MTI CAN
Header

Data Content

(optional field) 0x000
(optional field)

0x1800,0sss fddd

• Name: Standard name of the message.
• Description: Optional field, generally used if there is variant forms.
• CAN-MTI format: Typical CAN frame representation of the MTI. Optional field, used only if

the CAN-MTI is not equal to the low 12 bits of the Common MTI.
• CAN Header: Contains the CAN header. Source node ID alias is represented by “sss”.

Destination node ID alias, if present, is represented by “ddd”.
• Data Content: Summary description of data bytes, if any. For addressed messages, also include

the fixed destination address format, represented as “fddd”, where the “f” represents
fragmentation flags.

Note that this information is not completely independent. The MTI value depends on simple subset,
priority subgroup, etc, values. The messages are detailed in specific associated documentation. That
documentation is considered normative.

For more information, see the various “Message Networking” Standards and Technical Notes.

Copyright 2011-2015. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 4 of 5 - Feb 17, 2015

100

105

110

115

120

10

http://openlcb.org/Licensing.html

OpenLCB Common Information Technical Note

Table of Contents
 1 Introduction.. 1
 2 Data.. 1

 2.1 Reserved fields... 1
 2.2 Numerical representation... 1
 2.3 Byte sequences... 1
 2.4 Bit sequences..2
 2.5 Strings...2

 3 Presentation.. 3
 3.1 Presentation of CAN Quantities... 3
 3.2 Presentation of an OpenLCB message... 3

Copyright 2011-2015. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 5 of 5 - Feb 17, 2015

http://openlcb.org/Licensing.html

	1 Introduction
	2 Data
	2.1 Reserved fields
	2.2 Numerical representation
	2.3 Byte sequences
	2.4 Bit sequences
	2.5 Strings

	3 Presentation
	3.1 Presentation of CAN Quantities
	3.2 Presentation of an OpenLCB message

